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Outline

quantifying e-e interactions in 2D

renormalized spin susceptibility χ*. Low fields,
B|| << EF

renormalized χ*. High fields B|| ~ EF
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The studied object: 2D sheet of electrons
at a semiconductor-insulator interface

For a clean defect-free host lattice and interface, the very 
“dilute” 2D electron layer may be prepared, ~1010 cm-2

As a result, the e-e interaction energy Eee ∝ e2n1/2 is 
extremely high ~ 70K, much exceeding the kinetic (Fermi) 

energy EF ∝ n ~ 5K

λF∼5nm

rs=Eee/EF ∝ 1/n1/2 >>1

Motivation: The strongly correlated 2D electron system 
may exhibit new phases and new physics

reside at the Si-SiO2
inteface



Example of new physics:Example of new physics:
MIT in 2D system
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Similar Similar ρρ((TT) ) behavior is foundbehavior is found for otherfor other highhigh--
mobility/low density 2D systemsmobility/low density 2D systems ::

Y.Hanein et al. Phys.Rev.Lett. (1998)

p-GaAs, 
n-GaAs, 
p-Si/SiGe, 
n-Si/SiGe, 
n-SOI, 

etc.



There is no metallic stateThere is no metallic state andand MITMIT for  nonfor  non--
interacting electronsinteracting electrons

Spin-orbit interaction ?

Electron-phonon interaction ?

Too low temperature and too weak e-ph coupling

Is unrenormalized

Electron-electron interaction



Quantitative studies of the e-e interactions in 2D

Fi
a,s – coupling constants (harmonics) of e-e interaction

The plan is:

• to use FL-theory   

• to measure renormalization

• to quantify e-e interactions
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SdHSdH oscillations for zero and nonoscillations for zero and non--zero zero BB|||| fieldfield

Gershenson et al., Physica E (2002)



Renormalized χ*, m*, and 
g* versus rs determined 
from SdH oscillations in 
crossed fields  (g*µB < kT )

These are the data at E =EF

VP, MG, HK  et al. PRL (2002)
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V.P. et al., in: “Fundamental Problems of Mesoscopic Physics”, Kluwer (2004)
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Implementation of the measured  g* and m* 
to the transport data (ballistic regime, Tτ >> 1)
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Conclusion: Conclusion: 

at high temperature at high temperature TTττ>>>>1,1,
quasiquasi--linear linear δδρρ(T(T), ), δδσσ(T(T)) is is 
due to due to ee--ee interactioninteraction
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Conclusion: Conclusion: 

at high temperature at high temperature 
TTττ>>>>1,1,
quasiquasi--metallic metallic 

δδρρ(T(T), ), δδσσ(T(T))
is due to is due to ee--ee
interactioninteraction



VP et al. 
data on  

Si-MOS in
LOW field

Senatore et al

Shashkin et al. from ρ(B||) 
scaling  for Si-MOS in HIGH field

Renormalization of χ*:

overview of the data on Si-MOS

||



measured at EF and 
in the overall energy interval  (0 – EF)

Consequence 1. Consistency of the 
experimental χ*(rs)-data

e-e interaction is effective in a wide energy interval 
(δE~ EF, δE>> kT ), or is insensitive to spin

EF

k



χ* is strongly 
renormalized.

A spontaneous A spontaneous 
magnetic transition magnetic transition 
in 2D system of in 2D system of 

itinerant electrons ?itinerant electrons ?
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Does it diverge ?

How can  χ* be tested at the 
lowest carrier density n ~ nc ≅ 8x1010cm-2

(i.e. rs ≈ 9.5)  ?

Consequence 2
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VP, M.D’Iorio et al., PRB (1992); Phys.Lett. (1990).
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Sample 
Si6-14
n = nc

Sample 
Si15

n = nc

V.P. et al., in: “Fundamental Problems of Mesoscopic Physics”, Kluwer (04)

T=30mK



S.Kravchenko et al., SSC 116, 495 (2000)



S. Kravchenko et al., SSC 116, 495 (2000)



ρxx-minima occur at          
ν = 2, 6, 10, etc
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Hence,

ii) Estimation of the χ* value from sign
of the SdH oscillations

2.6 = 1/(2mb) <χ*/χb < 3/(2mb) = 7.9

ν =6

ν =2

hωc

ν =4
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2Ez



Periodicity and phase of the SdH oscillations 
corresponds to the presence of the two spin 
subbands for all densities (4-fold degeneracy)

The 2D system remainsThe 2D system remains unpolarizedunpolarized downdown to    to    

n n ≈≈ 7.5x107.5x101010cmcm--22

Though the polarization Though the polarization can not be excluded at can not be excluded at 
n n < 5< 5x10x101010cmcm--22 (insulating phase)(insulating phase)



A factor of 7x A factor of 7x 
enhancementenhancement
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 rs

is now  explained by: 

standard FL  model,

Dispersion instability,

Two-phase model,

disordered WC,   etc

Upper and lower 
estimates follow from 
period and sign of the 
oscillations



Landau approach works while there is a 
discontinuity at the Fermi level

0

1 

 

Z

EF

marginal Fermi-liquid  (Varma, Littlewood, Abrahams, et 
al.), Z → 0 logarithmically,

It doesn’t work, e.g. for:

“Fermion condensation” or “dispersion instability” model for 
strongly correlated fermions (Khodel, Shaginyan et al.). 



How do the renormalized How do the renormalized χχ* varies with * varies with T  T  ??
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The results:

ddχχ//dTdT > 0      for > 0      for TTττ <<1<<1
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χχ((TT))--dependence is weakdependence is weak

ddχχ//dTdT tends to change    tends to change    
sign  at sign  at TTττ →→ 11

χχ((TT)  )  significantly grows  significantly grows  
with with BB||



(2b) 
FL corrections for diffusive  regime Tτ <<1:

(Altshuler-Aronov, 1982)
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Single-particle spectra  calculated for rs= 1, 2, …8. 

After:
Khodel, Shaginyan, JETP Lett. 51(9), (1990).    
Galiski, Khodel, cond-mat/0308203;
Baldo et al. J.Phys. Cond-mat, 16, 6431 (2004)

Note: an instability 
for rs≈7

The “Fermion
condensation” model 
predicts: 
m* or g* to diverge ∝
1/(n-nc)3/8

χ*(T) ∝ T-2/3

Weakness of theWeakness of the χχ((TT)) dependencedependence does not support the does not support the 
“dispersion instability” model“dispersion instability” model
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Anticipated splitting of up and down masses

RPA result for  rs < 1

A.W.Overhauser, PRB (1971) 
(for 3D)



Anticipated splitting of up and down masses

Gangadharaiah, 
Maslov (2005)

rs

Polarization

m*/m0 Polarization =0.4

rs=0.2m*/m0



 

SdHSdH oscillations with normalized amplitudeoscillations with normalized amplitude

VP  et al., PRL (2002)
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The main result:

Electrons interact in the overall ensemble, rather than within 
each subbands

Possible interpretation: 
The main channel of interaction is provided by spinless
excitations with a wide energy spectrum ~ EF
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Renormalization of χ* vs spin polarization ζ = (n – n )/n
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The sharp drop in 
χ∗(B||) is consistent 

with the 
thermodynamic 

measurements of the  
M(B||) on Si-MOS

O.Prus, M.Reznikov
et al. PRB (2003)



Summary

Strong enchancement in χ*, m*, g* as n decreases
but FL remains paramagnetic

No deviation from FL are seen so far

e-e interactions takes place in a wide range of energies, 
and is insensitive to the Zeeman splitting

Inconsistency with the non-FL “Fermion condensation” 
model



Thank you for attention !Thank you for attention !

PM F-gas,    PM FL

rs

A paramagnetic 
localized state 
with a collective 
transport 
(pinned WS ?)

Potential 
magnetic 
transition
(if any)

9.5

nc


